Monitoring Water Filtration at a Brewery

monitoring-water-filtration-at-a-brewery

Although consumers focus on the flavour and alcohol content in beers, brewers know that the vast majority of their product is water. Water is what makes many of the well-known beers of the world so unique. For example, the Pilsen region of the Czech Republic is known for producing the pilsner, a pale golden lager with a crisp hoppy flavour. This style of beer was easy to produce because the low alkalinity of the Pilsen water required very little malt to bring the pH into the ideal range for brewing. This contrasts with the water commonly found in Dublin, which has a much higher alkalinity and therefore requires darker malts to lower the pH to the ideal range for brewing. This made Ireland an ideal place to brew porters, stouts, and other dark beers.

Traditional brewers understood the influence of source water qualitatively without an understanding of pH or water chemistry. Since then, our understanding of brewing chemistry has expanded. We now know that darker malts are more acidic and will change the pH more dramatically than lighter malts. This requires adjustments to the brewing recipe or adjustments to the source water to ensure that beers turn out exactly as anticipated. As a result, homebrewers and professionals alike place source water chemistry as a high priority.

Knowing water chemistry goes beyond just alkalinity and pH. Many brewers get their water from a municipal source, which means that chlorine is usually present in their source water. Chlorine in the brewing process can cause off flavours and slow fermentation, even at the typical low levels of 0.5 mg/L concentrations in tap water.

Due to the amount of variables in the source water, brewers tend to turn to reverse osmosis (RO) systems to remove chlorine and reduce the mineral content of the water by at least 90%. Reverse osmosis are a type of affordable filtration where water passes through a semipermeable membrane (typically active carbon) to remove ions, molecules, and larger particles from drinking water. This has the benefit of offering full control of the brewing water; brewers can simply add in any minerals they want in the beer and leave the rest out. By adjusting the water chemistry, a pilsner may be made in the Czech style without having water delivered from Pilsen.

Application

hi2030

A craft brewery contacted Hanna Instruments to inquire about a water quality solution for their treated water that they use for brewing. It was important that they tested the water coming out of the RO filtration system to verify that it is working effectively. The sales representative suggested edge, Hanna’s multiparameter tablet-style pH/EC/DO meter, HI2030. The HI2030 kit comes supplied with the HI763100 four ring conductivity probe. The HI2030 allowed the brewery to measure the total dissolved solids in the RO filtered water to ensure that it removed the minerals content effectively from the tap water.

shop-now

Because edge is multiparameter, the customer was able to add pH and dissolved oxygen measurements by simply purchasing additional electrodes. The customer appreciated that since the HI2030 uses digital electrodes, the GLP and calibration data was stored directly in the probe. This meant they could calibrate for each parameter at the beginning of the day, and switch between probes and parameters without having to recalibrate. The customer was impressed with the large variety of application specific pH electrodes available for purchase with edge. In addition to the HI2030 EC edge kit, they purchased a pH electrode with a clog-proof junction, the HI10480, for pH measurement in their water, must, and finished beer. The low profile of edge was desirable by the customer and it was easy to move the meter to save space when needed. The versatility of the meter brought value and a complete solution for the customer.

 

Download the Brochure:

edge-black_page_1

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s